Noise-assisted multivariate empirical mode decomposition for multichannel EMG signals
نویسندگان
چکیده
منابع مشابه
Noise-assisted multivariate empirical mode decomposition for multichannel EMG signals
BACKGROUND Ensemble Empirical Mode Decomposition (EEMD) has been popularised for single-channel Electromyography (EMG) signal processing as it can effectively extract the temporal information of the EMG time series. However, few papers examine the temporal and spatial characteristics across multiple muscle groups in relation to multichannel EMG signals. EXPERIMENT The experimental data was ob...
متن کاملMultivariate empirical mode decomposition and application to multichannel filtering
Empirical Mode Decomposition (EMD) is an emerging topic in signal processing research, applied in various practical fields due in particular to its data-driven filter bank properties. In this paper, a novel EMD approach called X-EMD (eXtended-EMD) is proposed, which allows for a straightforward decomposition of monoand multivariate signals without any change in the core of the algorithm. Qualit...
متن کاملEnsemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method
A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the p...
متن کاملCombination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States
Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...
متن کاملMultivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization
Quantifying the phase synchrony between signals is important in many different applications, including the study of the chaotic oscillators in physics and the modeling of the joint dynamics between channels of brain activity recorded by electroencephalogram (EEG). Current measures of phase synchrony rely on either the wavelet transform or the Hilbert transform of the signals and suffer from con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BioMedical Engineering OnLine
سال: 2017
ISSN: 1475-925X
DOI: 10.1186/s12938-017-0397-9